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ABSTRACT: Originally native to the eastern United States, American cranberry (Vaccinium macrocarpon Aiton, family
Ericaceae) cultivation of native and hybrid varieties has spread across North America. Herein is reported the phytochemical
diversity of five cranberry cultivars (Stevens, Ben Lear, Bergman, Pilgrim, and GH1) collected in the Greater Vancouver Regional
District, by anthocyanin content and UPLC-TOF-MS metabolomic profiling. The anthocyanin content for biological replicates
(n = 5) was determined as 7.98 ± 5.83, Ben Lear; 7.02 ± 1.75, Bergman; 6.05 ± 2.51, GH1; 3.28 ± 1.88, Pilgrim; and 2.81 ±
0.81, Stevens. Using subtractive metabonomic algorithms 6481 compounds were found conserved across all varietals, with 136
(Ben Lear), 84 (Bergman), 91 (GH1), 128 (Pilgrim), and 165 (Stevens) unique compounds observed. Principal component
analysis (PCA) did not differentiate varieties, whereas partial least-squares discriminate analysis (PLS-DA) exhibited clustering
patterns. Univariate statistical approaches were applied to the data set, establishing significance of values and assessing quality of
the models. Metabolomic profiling with chemometric analysis proved to be useful for characterizing metabonomic changes across
cranberry varieties.
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■ INTRODUCTION
The American cranberry, Vaccinium macrocarpon Aiton
(Ericacea), originally native to only eastern North America,
has been cultivated in low-lying bogs across North American
and parts of Europe,1,2 with the largest cultivation centers
located in Wisconsin, Massachusetts, and New Jersey in
the United States and in British Columbia, Canada.3,4 The
American cranberry can be considered a relatively young agri-
cultural crop species, having been domesticated only within the
past 160 years.5 Active breeding and selection of cranberry
cultivars are also relatively recent, and unlike many other staple
crop species, the cultivated cranberries are little evolved from
their wild relatives.5 It was not until the 1990s that much of the
acreage planted with native selections was replaced with first-
generation hybrids; however, even today many fields still con-
tain native cultivars.5

The first large-scale cranberry breeding program was initiated
by the U.S. Department of Agriculture (USDA) in 1929.5−7

The objective of the program was to develop cranberry cultivars
resistant to false blossom disease, a serious disease caused by a
phytoplasma carried by the blunt-nosed leafhopper.5−7 Other
selection criteria for the breeding program included yield, fruit
rot resistance, keeping quality, fruit appearance, coloring,
harvest date, and fruit size.7 Evidence from other domesticated
crops has shown that breeding can significantly affect secondary
metabolite levels and diversity within plants.8−10 These effects
are perhaps most prominent in the examination of secondary
metabolites that are associated with chemical defense.9,10 It has
been reported that cranberry breeding has had consequences
on antiherbivore defense, as evidenced by an increased sus-
ceptibility by two cultivars from a selection and breeding
program, as compared to three native varieties, to gypsy moth

caterpillars.11 The same study found that the reduced resistance
in the bred varieties correlated to a reduction in the levels of
several secondary metabolites in the leaves of the plants.11

Anthocyanins, thought to have several protective biological
roles including protection from ultraviolet radiation and solar
exposure, cold and drought resistance, and pathogen defense,12

are reported to vary between cultivars and time of harvest.13,14

The current study was designed to characterize and quantify
the phytochemical diversity among five cranberry cultivars
commonly grown in British Columbia, Canada: Ben Lear,
Stevens, Pilgrim, Bergman, and GH1. Ben Lear is a native
landrace selection from Wisconsin, which was domesticated
around 1900.15 It ripens early and has very good productivity
but is susceptible to rot and other diseases.15 The Pilgrim,
Stevens, and Bergman cultivars are all the result of a USDA
cranberry breeding program started in 1929.5,6 The cultivar
Stevens is a cross between the native McFarlin and Potter
cultivars and has become one of the most widely used cranberry
varieties in cultivation.5,7 Pilgrim, a cross of McFarlin and
Prolific, and Bergman, a cross of Early Black and Searles, are
also being grown throughout North America.7,15 GH1 is a
highly productive cross of Rezin McFarlin and Searles that was
developed by Ed Grygleski and released in 2004.15 The
breeding origins and relationship between the five cultivars
collected, along with an estimate of production percentages in
British Columbia, are depicted in Figure 1.
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The specific objectives of the study were to quantify the
biological variation of anthocyanin content within and across
the cultivars by a previously validated high-performance liquid
chromatography with ultraviolet (HPLC-UV) detection
method16,17 adapted to rapid resolution chromatography17

and to develop a model approach that describes phytochemical
diversity and relationships between cultivars through ultra-
performance liquid chromatography with time of flight mass
spectrometry (UPLC-TOF-MS) metabolomic profiling. Metab-
olomics, defined as the phytochemistry of metabolites found in
an organism being studied within a snapshot of time, can be
used to build a picture to represent a system metabolome.18

Focusing on the entire metabolome, meaning the entire suite of
metabolites in a biological system,19 is a fundamental shift from
the characterization of specific classes of plant secondary
metabolites. There have been significant advances made in
agriculture and food research to distinguish and characterize
related materials through the combined use of analytical
chemistry techniques to acquire metabolomic profiles with
statistical tools to extract relevant information from the data set,
referred to as “chemometrics”.8,20−24

Metabolomics profiles can be compared in a “metabonomic”
approach, which is described as the quantitative measurement
of time-related multiparametric metabolic responses of multi-
cellular systems to pathophysiological stimuli.25 A systematic
examination of UPLC-TOF-MS metabolomic profiles from
commonly produced cultivars of V. macrocarpon was under-
taken in a process referred to as “subtractive metabonom-
ics”.26,27 This comparison of metabolites from multiple
replicates and related biological systems or populations moves
beyond characterization at a singular time point to support the
identification of relationships across population metabolomes,
in this study, cultivars of V. macrocarpon. Multivariate data
analysis was employed to assist in the evaluation of relation-
ships identified by comparing the metabolomes and visual-
ization of clustering across the cultivars. Different statistical
tools were applied to the data set to evaluate data significance
and the robustness of the multivairate models developed. This
“chemoinformatic” approach introduces a process by which
incorrect designation of metabolites as significant and potential
misclassifications of relationships can be minimized when

considering metabolomic data and offers a new model for
interpreting metabolomics data and describing metabonomic
changes in the overall phytochemistry of cranberry
cultivars.28,29

■ MATERIALS AND METHODS
Plant Materials. V. macrocarpon Aiton samples were collected

from the Lower Mainland of British Columbia from five sites (Figure 2)
on October 16, 2010: Ben Lear (N 49 °11.861′, W 123° 02.557′),
Pilgrim (N 49° 10.944′, W 123° 00.759′), Stevens (N 49° 11.065′, W
123° 00.523′), Bergman (N 49° 11.760′, W 123° 02.109′), and GH1
(N 49° 11.869, W 123° 02.564′). Cranberry production at all sites
was under similar growing conditions (peat) and utilized the same
watershed. For all cultivars, the berries were collected immediately
prior to the scheduled wet harvesting of the site. Berries were frozen
within 4 h of collection and stored at −20 °C until use in chemical and
metabolomic analyses.

Chemicals and Calibration Standards. The chemical reagents
(hydrochloric acid, glacial acetic acid, phosphoric acid, formic acid)
used in this study were of analytical grade and obtained from Sigma-
Aldrich Canada (Oakville, ON, Canada). Chromatography and
extraction solvents (acetonitrile, methanol, water) were of HPLC
grade or equivalent and obtained from VWR International
(Edmonton, AB, Canada). Individual anthocyanin chemical calibration
standards (250−500 μg/mL) were prepared in 2% concentrated HCl
in methanol (v/v) by Cerilliant Corp. (Round Rock, TX) in Snap-N-
Shoot format. Mixed chemical calibration standards were prepared for
n = 5 levels by serial dilution with 2% concentrated HCl in methanol
(v/v). The individual Snap-N-Shoot chemical calibration standards
were stored at −20 °C when not in use, and the purity was determined
chromatographically immediately prior to use.

Sample Preparation. The experiment was designed to compare
two different sampling methods, biological and analytical.

Sampling for Biological Variability. A randomized sample selection
procedure was followed to subsample five replicate berries from each
cultivar collection; each individual berry was weighed, freeze-dried
(Modulo Freeze-Dry System; Fisher Scientific, Ottawa, ON, Canada),
reweighed to determine percent dry matter, and prepared as individual
berries for analysis using a previously published validated analytical
method.16

Sampling for Analytical Variability.Twenty individual cranberries
were selected at random from the field collections, combined into a
bulk sample, weighed, freeze-dried, reweighed to determine percent
dry matter, ground to a <60-mesh powder, and subsampled in five
replicates. All cranberry samples were weighed (0.250 ± 0.025 g) into

Figure 1. Breeding map showing origins of the five cultivars of Vaccinium macrocarpon Aiton being studied in relation to other common cultivars,
along with the estimated production percentages of each cultivar in British Columbia.
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50 mL conical tubes, 20 mL of HPLC grade MeOH−concentrated
HCl (98:2, v/v) was added, and samples were mixed with a vortex
mixer (Thermolyne Maxi Mix 1; Fisher Scientific) for 10 s, sonicated
(Branson model 3510R-MTH Ultrasonic Cleaner; VWR International,
Mississauga, ON, Canada) for 15 min, and shaken on an angle at
180 rpm for 30 min (wrist-action shaker model 57040-82; Burrell
Scientific, Pittsburgh, PA). The supernatant was decanted into a
25 mL glass volumetric flask, and samples were brought toa final
volume of 25 mL with the extraction solvent. Samples were mixed well
by inversion, and approximately 1 mL of each sample solution was
filtered (0.45 μm Teflon filters; VWR International; Edmonton, AB,
Canada) into an amber vial for HPLC analysis.
Anthocyanin Determination by HPLC-DAD. The content of

cyanidin-3-O-galactoside, cyanidin-3-O-arabinoside, cyanidin-3-O-glu-
coside, peonidin-3-O-galactoside, and peonidin-3-O-arabinoside was
determined in the samples as per a published analytical method.16,17 In
brief, anthocyanins were chromatographically separated using an 1100
series Agilent (Mississauga, ON, Canada) liquid chromatography
system at ambient temperature using a reverse phase Zorbax SB-C18
Rapid Resolution HT column (4.6 × 50 mm, 1.8 μm) with a mobile
composition of (A) 0.5% water−phosphoric acid (99.5:0.5, v/v)
and (B) water−acetonitrile−glacial acetic acid−phosphoric acid
(50.0:48.5:1.0:0.5, v/v/v/v). The optimized gradient program is
9−36% B over 8.0 min, 36−60% B over 0.5 min, 60−80% B over
0.5 min, and 80−9% B over 0.1 min, with a hold at 9% B for 1.4 min.
The injection volume and flow rate were 5 μL and 2.1 mL/min,
respectively. The analytes were detected at 520 nm, and data were
collected and analyzed using ChemStation software (rev. B.03.01)
from Agilent Technologies (Mississauga, ON, Canada). Quantification
of anthocyanins was accomplished through the use of standard curves
obtained through the analysis of the mixed standard solutions prepared
as per the procedure described above. Single-factor ANOVA was used
to compare the quantities of the individual and total anthocyanin levels
as well as anthocyanin ratios in the biological and analytical replicates
between the cultivars. Student t tests were used to compare the
anthocyanin levels and ratios between the biological and analytical
replicates for each cultivar.
Metabolomic Profiling by UPLC-TOF-MS. Cranberry metab-

olomes were analyzed as per a previously established protocol23 with
an Acquity series ultraperformance liquid chromatography system
(Waters Inc., Mississauga, ON, Canada) coupled with a Micromass
LCT Premier series TOF-MS (Waters Inc.) and controlled with a
MassLynx V4.1 data analysis system (Waters). Chromatographic
separation was achieved with a Waters BEH Acquity C18, 2.1 × 150 mm,
1.7 μm column, with the following mobile phase conditions: 0.1%
aqueous formic acid/acetonitrile (0.0−10.0 min, 95:5−5:95 v/v,

10.0−15.0 min, 5:95 v/v, 15.0−20.0 min, 5:95−95:5 v/v, 20.0−25.0 min,
95:5 v/v). A 25 min run time was used with a flow rate of 0.25 mL/min
and a column temperature of 30 °C. The autosampler was at 4 °C with
an injection volume of 5 μL. A Waters 1525 HPLC binary solvent
manager provided a steady flow of 2 ng/mL leucine enkephalin at
10 μL/min as the internal calibrant for flight tube length in mass
spectrometer.

Data Processing and Subtractive Metabonomics. The
metabolomic data of the five V. macrocarpon cultivars, acquired by
UPLC-TOF-MS experiments, were autoscaled using the standard
MassLynx data collection software to set the initial time interval and
maximum signal intensity. The resultant data were then compiled with
blanks summed and subtracted with any resulting negative values reset
to zero in Microsoft Excel (Microsoft Corp., Redmond, WA). A series
of automated functions to create subtractive data sets were created in
Microsoft Excel using sequential algorithms and functions designated
“Subtractive Metabonomics”.26,27 The custom macros designed for this
process serve to locate standards, align retention times, remove
multiply charged ions, etc., and can provided detailed information
from any metabolite data set. After blank subtraction, the data were
also set up in an ASCII text file, where rows consist of sample
identifiers as objects and columns consist of retention time, m/z ratio,
and abundance as variables for import into R (R Foundation, GNU)
and Solo+MIA (Eigenvector Research Inc., Wenatchee, WA) for
further statistical analysis including multivariate modeling.

Significance Analysis. To assess the degree of significance of
metabolites/compounds in comparisons of the metabolomics profiles
of the five cranberry cultivars, different univariate statistical tools were
employed. First, receiver operator characteristic (ROC) curves were
generated and the area under the ROC curve (AUC) were computed
for each binary comparison among the five cultivars using the
“colAUC” algorithm in the “caTools” package.30 The ROC curve is a
plot of the sensitivity for a binary classification system.29 The accuracy
of this plot is determined by assessing the AUC, whereby an AUC of 1
would indicate 100% sensitivity at a 0% false-positive rate. To generate
a “total” AUC value that captures all possible binary comparisons
between the cultivars, the mean of all 10 binary AUC values at each
m/z value was determined.31 In this way the AUC can be used to
capture the distribution of abundance across the cultivars and between
replicates.

The analysis can become more meaningful when results are sup-
plemented with univariate variance analysis such as the nonparametric
Kruskal−Wallis one-way analysis of variance.32 At each m/z value the
Kruskal−Wallis p value was calculated for the replicate abundance data
(n = 5 per cultivar) using the “kruskal.test” algorithm derived from the
“stats” package available in R. The p values and total AUC of the

Figure 2. Collection area (left: red pin) in Lower Mainland, British Columbia, and specific sites of collection for the five Vaccinium macrocarpon
Aiton cultivars used in this study.
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metabolomic data are plotted in Excel to enable identification of those
variables that exhibited high variances in abundance across cultivars
and small deviations within replicates. This process was employed as a
tool to assist in the identification of components (variables) in the
metabolomics profiles that may be significant in terms of contributing
to cultivar differentiation.
As the AUC is a binary comparison, it is unable to capture

interactions or relationships that may exist across the metabolites in
the metabolomics profiles; the significance of microarrays (SAM)
analysis described by Tusher et al.33 is another approach for identifying
metabolites (variables) of significance that is based on the distribution
of abundance in the metabolomics profiles of each cultivar. The SAM
statistic was applied to identify m/z values of significance when the five
cultivars were compared with respect to abundance; the false discovery
rate (FDR) was calculated at each threshold selected.33 The ranked
groups of values and associated FDRs were compiled using the
“siggenes” package done in R.34 The m/z values identified by the SAM
statistic were distinguished in the plot of p value against total AUC of
each metabolite.
Multivariate Analysis. Both unsupervised (PCA) and supervised

(PLS-DA) algorithms were selected to observe variance exhibited by
the metabolomic data and relate categorical information (sample
identifiers) to the abundance data. The only preprocessing of the data
prior to the application of PCA and PLS-DA algorithms was
autoscaling performed in Solo+MIA. Score plots were generated to
visualize clustering by varietal and loadings plots for examining the
distribution of data values. Within the loading plots for the PLS-DA
models, the calculated Kruskal−Wallis p values for abundances at each
m/z value were labeled as two groups: values with a calculated p value
>0.05 and values with a p value of <0.05. Those data with p values
>0.05 were removed from the data set and the remaining data
remodeled. The Q-residual value of each m/z value (variable) was
taken from the PLS-DA loading plots.35 Each Q-residual was
transformed into %Q-residual by the formula

−
−

× =
⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

Q Q

Q
Q1 100 %res res

min

res
max res

where Qres
min is the minimal Q-residual of the entire metabolomic

data set and Qres
max is the maximal Q-residual of the entire

metabolomic data set. The %Q-residual was used to observe the
ability of the chosen model to capture the contributed
information existing in the data at each m/z value.

■ RESULTS AND DISCUSSION

Determination of Anthocyanins in Cranberry Varietals.
The Ben Lear, Bergman, and GH1 cultivars had significantly
higher anthocyanin levels than the Pilgrim and Stevens
cultivars (Figure 3). These trends are in agreement with other
studies that reported higher anthocyanin levels in Ben Lear
than in Stevens.14,36 As noted by Vorsa et al., this variation in
the anthocyanin levels can be partially explained by the
differences in the size of the fruit, as a negative correlation has
been observed between fruit productivity and anthocyanin
content.14

Fruit size differs across the cultivars, with Ben Lear and
Bergman having the smallest fruit with cup counts of 70−90
and 65−80, respectively, and Pilgrim and Stevens having the
largest fruit with cup counts of 46−66 and 50−60, respectively.
Our observations are consistent with anthocyanin concen-
tration being higher in the skin, thereby affecting the surface
area to volume ratio and the resultant measured values. With
other crops it has been observed that cultivars bred for
commercial production have reduced levels of certain
secondary metabolites and chemical diversity as compared to
wild type.10,11,37 To allow for high productivity and large fruit

size, some trade-offs are expected as additional energy and
nutrients are devoted to fruit production.10,11,37 Both Pilgrim
and Stevens were selected in part because of their large fruit
size and high productivity, however, this selection may have
translated into the inhibition of anthocyanin-producing path-
ways. Thus, careful consideration and monitoring of several
variables is needed in the breeding of cultivars to ensure desired
properties are retained and/or improved upon. For example,
GH1, a relatively new cultivar, exhibits high productivity
without a decrease in anthocyanin production. This cultivar had
relatively high levels of anthocyanins, yet is of similar size and is
more productive than Stevens and Pilgrim. There are efforts
being made to cultivate cultivars that are productive, have large
fruit, and have high anthocyanin levels.7,38

Figure 4 shows the comparison between the biological and
analytical replicates. Although at first glance the biological
replicates appear to show higher anthocyanin values, Student t
tests indicated that only in Bergman was a statistically
significant difference (p < 0.05) detected. The biological
replicates had a large variance associated with them, whereas
the analytical replicates showed a very low level of variance.
The results herein presented provide an interesting representa-
tion of the trade-offs inherent in composite sampling. The main
advantage of composite sampling is a reduction in measure-
ment costs. Analysis of n = 20 can thus be accomplished in one
measurement using a validated method, and the result provides
a good estimate of the population mean. The observed variance
from the analysis of the five analytical replicates is
predominately due to the inherent precision of the analytical
method. The trade-off to this reduced testing approach is in a
loss of information concerning the inherent variance of the
sample population. As shown in the biological replicates, there
is a large variance in the anthocyanin levels between individual
berries within a given cultivar population. One implication of
the lost information can be seen when the cyanidin glycoside
to peonidin glycoside ratios are compared (Figure 4). The
analytical replicates of Ben Lear, GH1, and Stevens were found
to have lower cyanidin glycoside to peonidin glycoside ratios
than Bergman and Pilgrim; however, no significant differences
in the ratios were detected when the biological replicates
were compared. As the variance in the composite sample is
dominated by the method precision and not the variability of
the berries, a proper comparison of the ratios cannot be
accomplished. This is of particular interest as it is often
necessary to pool biological replicates to provide enough
material for the analytical technique being utilized. This would
have, in this case, potentially led to incorrect conclusions as to
differences between the cultivars that actually lie within the
range of biological variation. Multiple biological replicates are
required to provide the necessary variance information and thus
allow for a proper comparison of the populations.

Metabolomic Profiling by UPLC-TOF-MS. The metab-
olite counts and results of subtractive metabonomics are found
in Table 1, which makes direct comparisons across the
metabolomics fingerprints of the five V. macrocarpon cultivars.
Using subtractive metabonomic algorithms described previ-
ously,26,27 6481 compounds were found conserved across all
varietals, with 136 (Ben Lear), 84 (Bergman), 91 (GH1), 128
(Pilgrim), and 165 (Stevens) unique compounds observed.
About 55−57% of the phytochemistry described in the
metabolomic fingerprints was common across all cultivars,
with the exception of the metabolome of Stevens, which shared
65% of the observed phytochemistry with all other cultivars.
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From the binary comparisons of the metabolomics profiles, we
observe Stevens and Bergman and Stevens and Ben Lear have
the fewest metabolites in common with 83 and 84, respectively,
whereas Stevens and GH1 share the most in common with 214.
Chemometric Analysis of Metabolomic Data. In the

PCA score plot of the first and second principal components,

significant differentiation among the cranberry cultivars from
metabolomic profiles was not observed, despite the differences
noted in the metabolite counts for each cultivar (data not
shown). To observe how the metabolomic profiles of the
cultivars may be differentiated, PLS-DA was selected as the next
modeling tool (Figure 5A,B). In the score plot modeling linear

Figure 3. Average anthocyanin content in each cultivar for biological replicates (n = 5) and extractions from a composite sample of cranberries
(n = 5) with error bars representing the standard error of the mean for (A) cyanidin-3-O-galactoside, (B) cyanidin-3-O-glucoside, (C) cyanidin-
3-O-arabinoside, (D) peonidin-3-O-galactoside, and (E) peonidin-3-O-arabinosde and (F) the total anthocyanin content in mg/g of dry weight
material (DW).
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variates one (LV1) and two (LV2) differentiation of Stevens
and GH1 from the other cultivars is observed with the 95%

confidence boundaries around Bergman, Ben Lear, and Pilgrim
overlapping (Figure 5A). The linked loadings plot (Figure 5B)

Figure 4. Comparison of the glycosylated peonidins and glycosylated cyanidins in five Vaccinium macrocarpon cultivars as a percent of the total
anthocyanins in each Vaccinium macrocarpon Aiton. cultivar: (A) analytical replicates (n = 5); (B) biological replicates (n = 5). Graphs show averages
with error bars representing the standard error of the means.

Table 1. Summary of LC-MS-TOF Metabolite Counts and Differences Metabolomic Profiles of Five Cultivars of Vaccinium
macrocarpon

V. macrocarponcultivar

Ben Lear Bergman GH1 Pilgrim Stevens

total no. of compounds observed 11544 11395 11322 11736 10038
av no. of compounds per cultivar 5971 ± 195 5944 ± 131 5848 ± 147 6330 ± 222 4477 ± 945
compounds in all replicates 1717 1828 1616 2108 252
compounds in at least 50% of replicates 5254 5262 5225 5674 3765
unique to each cultivar 136 84 91 128 165
common to all cultivars 6481
common between cultivars

Ben Lear 152 100 171 85
Bergman 152 96 140 83
GH1 100 96 132 214
Pilgrim 171 140 132 118
Stevens 85 83 214 118
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indicates minor clustering of the data by cultivar: Stevens
(upper right corner), GH1 (bottom center), and the intense
cluster of metabolites where Bergman, Ben Lear, and Pilgrim
are located (upper left corner). This clustering is also evident in
the values with a Kruskal−Wallis p value of <0.05 (highlighted
in red), which indicates the data contributing to the clustering
pattern are statistically significant. To further evaluate the
relationships between the cultivars and robustness of the data in
LV1/LV2, metabolites with p value of >0.05 were peeled off the
PLS-DA model and the score and loadings plots remodeled
(Figure 5C,D). For the metabolite total of 15064 values, 1749
had a calculated p < 0.05, resulting in a loss of 88.4% of the data.
With a limited number of samples (n = 5) evaluated per

Vaccinium sp., the suggested way of validating or testing the
performance of the multivariate model by randomly assigning
25% of the samples as “unknown” to test against a model built
of the remaining data39 is not possible, so another approach
must be taken. Just as an analytical method can be orthogonally
validated by employing an independent method, the results of
the PLS-DA model can be compared to a univariate statistical
analysis, the significance analysis of microarray (SAM) statistic.
The values identified as significant by the SAM statistic are
identified (in red) in the LV1/LV2 loadings plot (Figure 5C)
to observe whether they fall within the clusters that define the
positioning of the five cultivars in the remodeled LV1/LV2 score
plot (Figure 5D). With a FDR of 1.78%, the 20 values identified
by the SAM statistic are unlikely to be false positives (Table 2).

Figure 5. Multivariate analysis of the UPLC-TOF-MS metabolomic profiles of the cranberry varietals: (A) PLS-DA score plot for LV1/LV2; (B)
corresponding loadings plot for the PLS-DA model (data with calculated Kruskal−Wallis p value <0.05 are highlighted in red); (C) loadings plot
remodeled with all values having a p value >0.05 removed and values identified as significant by SAM statistic highlighted in red; (D) corresponding
remodeled PLS-DA score plot for LV1/LV2.

Table 2. Summary of LC-MS-TOF Metabolomic m/z Values
Identified by the SAM Statistic in Order of Ranked
Significance, d(i), at a False-Discovery Rate of 1.78% as well
as the Q-Residual Values of the Compounds in the PLS-DA
Model for Up to LV2 and Up to LV4

Q-residual (%)

m/z value d(i) value up to LV2 up to LV4

296.385 42.9 98.7 97.7
285.291 26.2 42.4 98.4
305.296 25.8 97.1 100.0
294.354 23.9 95.0 96.5
792.901 23.6 93.8 93.9
482.553 23.4 97.9 97.4
584.593 22.7 83.7 96.3
631.546 22.1 99.0 97.9
398.494 21.9 75.2 80.9
280.337 21.9 80.3 89.6
546.612 20.1 98.5 95.9
585.555 19.4 90.1 89.7
986.927 19.0 85.3 83.5
719.697 18.5 83.7 86.8
398.988 18.4 80.1 87.1
233.316 17.0 91.0 88.8
245.276 16.7 96.6 95.3
276.317 16.6 94.6 93.4
736.798 15.8 89.7 88.6
553.652 15.6 87.9 87.3

Journal of Agricultural and Food Chemistry Article

dx.doi.org/10.1021/jf2033335 | J. Agric.Food Chem. 2012, 60, 261−271267



The SAM values positioned within the clustered areas and at
their outermost edges where the contribution of the values to
the score plot clustering is greatest (Figure 5C) are suppor-
tive of the PLS-DA model. For example, the SAM algorithm
identified a m/z value of 276.3168, observed only in the
Stevens cultivar, as significant, and this value appears on the
edge of the cluster in the loading plot that represents the
Stevens cultivar in the PLS-DA model. Similarly, m/z values of
compounds observed only in the metabolomics profiles of the
GH1 cultivar should be in the lower bottom corner of the
loadings plot (Figure 5C), near the LV1 value of zero, and in
this region two m/z values, 986.9273 and 398.9882, were
identified as significant by the SAM statistic. Although m/z
986.9273 is observed only in GH1, m/z 398.9882 was observed
in both GH1 and Ben Lear cultivars. Examining the score plot
(Figure 5D), we see that Ben Lear is positioned closest to GH1
and as such the PLS-DA model for LV1/LV2 is again con-
sistent with the SAM statistic.
Often differentiation is not observed in the score plot of the

first two linear variates, and other combinations can be
considered. Figure 6A is the score plot of LV4 and LV2,
which shows a very different clustering pattern from that in
Figure 5A. Ben Lear, GH1, and Bergman are somewhat
differentiated, and the 95% confidence intervals around Stevens
and Pilgrim cultivars are overlapping; however, the linked
loadings plot (Figure 6B) shows that values with p < 0.05 are

not concentrated in the same way but rather are spread in the
LV4/LV2 model. When the values with a calculated p > 0.05
are removed, the remodeled PLS-DA loadings (Figure 6C) and
score (Figure 6D) plots do not exhibit the same degree of
clustering. It is expected that LV4/LV2 would not contain as
much exhibited variance from the metabolomic profiles as
LV1/LV2, but interestingly once the p value <0.05 cutoff is
applied to LV1/LV2, there is a 2.0-fold increase in the amount
of variance explained (from 17.40 to 35.23%), and for LV4/
LV2 the amount of variance explained by the model sees a 1.6-fold
change from 10.83 to 16.82%. Looking at the distribution of
the values identified as significant by the SAM statistic in the
remodeled loadings plot (Figure 6C) shows the 20 values,
highlighted in red, cluster in a fashion that loosely reflects the
differentiation observed in the score plot (Figure 6D) but are not
concentrated at the outermost edges of the LV4/LV2 loadings plot.
On the basis of the combination of orthogonal statistical

approaches for evaluating the metabolomics profiles of the five
cultivars, we can have more confidence in PLS-DA model of
LV1/LV2, which indicates the metabolome of the Stevens
cultivar is distinct from Ben Lear, Bergman, GH1, and Pilgrim,
although more similar to GH1, which also exhibits a
phytochemical signature distinct from Ben Lear, Bergman,
and Pilgrim. Although only the LV1/LV2 plots (score and
loading) agree with the orthogonal univariate statistics, some
merit is seen in the LV4/LV2 plots (Figure 6C,D), where a

Figure 6. Multivariate analysis of the UPLC-TOF-MS metabolomic profiles of the cranberry varietals: (A) PLS-DA score plot for LV4/LV2; (B)
corresponding loadings plot for the PLS-DA model (data with calculated Kruskal−Wallis p value <0.05 are highlighted in red); (C) loadings plot
remodeled with all values having a p value >0.05 removed and with values identified as significant by SAM statistic highlighted in red; (D)
corresponding remodeled PLS-DA score plot for LV4/LV2.

Journal of Agricultural and Food Chemistry Article

dx.doi.org/10.1021/jf2033335 | J. Agric.Food Chem. 2012, 60, 261−271268



cluster of the SAM identified metabolites is localized at the
outermost edges of a cluster in the loadings plot that reflects
where Stevens and Pilgrim are positioned in the score plot.
This indicates those metabolite values are truly more significant
than other metabolites identified by the SAM statistic with
respect to the LV4/LV2 PLS-DA model. Although generally it
is assumed with the inclusion of more latent variables in a PLS-
DA model the more variance the model exhibits per metabolite
value, the comparison of the Q-residuals for up to LV2 and LV4
shows nearly 50% of the SAM identified values (9 of 20 total)
reflect a decreasing %Q-residual with increasing number of
latent variables (Table 2), thereby providing further confidence
in the LV2/LV4 PLS-DA model.
The majority of the SAM identified metabolite values are

present in at least three of the cultivars (Table 3). It is
interesting to note that where the values are observed in only
four, three, or two cultivars, they were not observed in the
Stevens cultivar. In fact, outside those values found in all five
cultivar, only one m/z value of significance was identified by
SAM, m/z 276.317, and observed in Stevens (Table 3). Further
investigations on those values not conserved in the Stevens
cultivar could lead to a better understanding of the differences
and relationships between the native and hybrid cultivars, such
as Stevens and GH1.
Applying univariate statistics as a quality assessment of the

PLS-DA models developed from the metabolomics data
indicates that the LV1/LV2 model is a better fit than LV2/
LV4, where the cultivars are further differentiated. Having the

majority of the %Q-residual per metabolite value not increasing
with an increased number of latent variables further suggests
the PLS-DA models are not entirely reflective of the cranberry
cultivar metabolomes. However, the metabolomic data and
PLS-DA models should be carefully considered as it is expected
that the differences and similarities of cultivars from a single
species would be subtle. This is further illustrated in Table 3,
where the majority of the SAM identified metabolite values
exist in all or the majority of cultivars, indicating that significant
values existing only in one cultivar are difficult to find.
Strategies exist to better improve the “detection” of important
metabolites, although for a cultivar study it may prove more
useful to increase the sample size to better illustrate the true
picture, decrease the value of the associated FDR with statistical
models, and cross-validate the multivariate models developed.
Both the targeted and untargeted analyses found significant

phytochemical differences among the cultivars. If the goal of the
commercial production is yield of anthocyanins, then mass
plantings of high-anthocyanin cultivars such as Ben Lear,
Bergman, or GH1 would be recommended. However, other
agronomic considerations such as yield and disease resistance
may be reflected in the large-scale production of Stevens by
commercial farmers. It is interesting that GH1, a modern
cultivar which exhibits both high productivity and high
anthocyanin content, is reasonably differentiated by both
PLS-DA models and has metabolites of significance identified
in Table 3 both independent of the other cultivars and in
common with Ben Lear, Bergman, and Pilgrim. Overall, the

Table 3. Observed Average Abundance (n = 5), Total AUC, and Ranking by d(i) Value of the m/z Values Identified by the SAM
Statistic as Significant at a False-Discovery Rate of 1.78% Compared across the Five V. macropcarpon Cultivars

av abundance for n = 5 replicates

m/z value Stevens GH1 Bergman Ben Lear Pilgrim total AUC rank, d(i) value

Observed in All Cultivars
792.901 0.074 0.270 0.360 0.483 0.494 0.920 5th, 23.6
296.385 0.107 1.112 0.627 0.806 0.678 0.904 1st, 42.9
305.296 0.446 0.984 1.381 1.637 1.322 0.896 3rd, 25.8
482.553 0.347 0.482 0.908 0.958 1.121 0.896 6th, 23.4
280.337 0.223 1.205 1.516 1.256 0.950 0.880 10th, 21.9
736.798 1.787 7.160 5.645 6.995 6.331 0.852 19th, 15.8
719.697 0.208 1.235 1.092 1.239 0.892 0.836 14th, 18.5
585.555 0.277 1.494 1.693 1.668 1.472 0.788 12th, 19.4
546.612 0.208 1.995 2.134 2.316 2.273 0.782 11th, 20.1

Observed in Four Cultivars
584.593 0.038 0.077 0.071 0.123 0.928 7th, 22.7
631.546 0.026 0.061 0.077 0.093 0.912 7th, 22.1
245.276 0.138 0.278 0.264 0.317 0.844 17th, 16.7
233.316 0.383 0.546 0.602 0.605 0.796 16th, 17.0

Observed in Three Cultivars
398.494 0.052 0.061 0.084 0.884 9th, 21.9
294.354 0.043 0.042 0.058 0.866 4th, 23.9
553.652 0.042 0.060 0.061 0.834 20th, 15.6

Observed in Two Cultivars
398.988 0.036 0.020 0.844 15th, 18.4
285.291 0.035 0.150 0.784 2nd, 26.2

Observed in Only One Cultivar
986.927 0.029 0.736 13th, 19.0
276.317 0.115 0.700 18th, 16.6
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significance analyses identified individual metabolites character-
istic of each of the cultivars, and a new approach to quality
assessment of multivariate models of metabolomics data has
been demonstrated. One of the key difficulties with
metabolomics data sets is the need for methods and statistical
approaches to ensure the quality of data sets. The combined
application of the univariate approaches, statistical Kruskal−
Wallis p values, area under the ROC curve, and SAM statistic,
provides the basis for establishing quality evaluations of
multivariate models as a new tool for metabolomics research
with broad future applications.
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